

Pharmacotherapy plus endoscopic intervention is more effective than pharmacotherapy or endoscopy alone in the secondary prevention of esophageal variceal bleeding: a meta-analysis of randomized, controlled trials

Mamata Ravipati, MD, Srikanth Katragadda, MD, Paari Dominic Swaminathan, MD, Janos Molnar, MD, Edwin Zarling, MD

Chicago, Illinois, Toledo, Ohio, USA

Background: Previous clinical trials on the treatment of esophageal variceal bleeding yielded mixed results regarding the efficacy of endoscopic procedures compared with pharmacotherapy only.

Objective: To compare the efficacy of endoscopic procedures with that of pharmacotherapy in the prevention of mortality and rebleeding.

Design and Setting: A systematic literature review was performed to identify randomized, controlled trials of the efficacy of pharmacotherapy and endoscopic therapy. A meta-analysis was performed by using the Comprehensive MetaAnalysis software package. A 2-sided α error $<.05$ was considered statistically significant ($P < .05$).

Patients: Twenty-five clinical trials with a total of 2159 patients were eligible for meta-analysis.

Outcome Measurements: Relative risk (RR) with 95% confidence interval (CI) was computed for all-cause mortality, mortality from rebleeding, all-cause rebleeding, and rebleeding caused by varices.

Results: Pharmacotherapy was as effective as endoscopic procedures in preventing rebleeding (RR 1.067; 95% CI, 0.865-1.316; $P = .546$), variceal rebleeding (RR 1.143; 95% CI, 0.791-1.651; $P = .476$), all-cause mortality (RR 0.997; 95% CI, 0.827-1.202, $P = .978$), and mortality from rebleeding (RR 1.171; 95% CI, 0.816-1.679; $P = .39$). Pharmacotherapy combined with endoscopic procedures did not reduce all-cause mortality (RR 0.787; 95% CI, 0.587-1.054; $P = .108$) or mortality caused by rebleeding (RR 0.786; 95% CI, 0.445-1.387; $P = .405$) compared with endoscopic procedures. However, combination therapy (endoscopic procedure plus pharmacotherapy) significantly reduced the incidence of all rebleeding (RR 0.623; 95% CI, 0.523-0.741; $P < .001$) and variceal rebleeding (RR 0.601; 95% CI, 0.440-0.820; $P < .001$).

Limitations: Heterogeneity of patient population and different treatment protocols may have affected our meta-analysis.

Conclusion: Pharmacotherapy may be as effective as endoscopic therapy in reducing rebleeding rates and all-cause mortality. Pharmacotherapy plus endoscopic intervention is more effective than endoscopic intervention alone. (Gastrointest Endosc 2009;70:658-64.)

Bleeding from esophageal varices is a serious complication of portal hypertension. After an initial episode of acute

Abbreviation: RR, relative risk.

DISCLOSURE: All authors disclosed no financial relationships relevant to this publication.

See CME section; p. 748.

Copyright © 2009 by the American Society for Gastrointestinal Endoscopy
0016-5107/\$36.00
doi:10.1016/j.gie.2009.02.029

variceal bleed, patients with cirrhosis have a 70% risk of rebleeding, and of those who do rebleed, there is a 20% to 35% mortality rate.^{1,2} Sclerotherapy, ligation, and pharmacological treatment are recommended therapeutic modalities for the prevention of variceal bleeding.³ Endoscopic sclerotherapy involves intravariceal or paravariceal injections of a sclerosant agent. Sclerotherapy is performed every 10 to 14 days until the varices are resolved, which usually takes 5 to 6 sessions. Polidocanol, ethanalamine, ethanol, tetradeethyl sulfate, and sodium morrhuate are the various sclerosing agents used. In endoscopic

band ligation, varices are ligated and strangled with elastic O-rings on the varix. Five to 8 elastic bands are used per session. Ligation is performed every 2 to 3 weeks until the varices have been obliterated, usually in 3 to 4 sessions.

Pharmacological treatment of varices with drugs such as β -blockers and nitrates has also been studied in various trials. β -Blockers decrease portal pressure by decreasing cardiac output via β_1 receptor blockage.⁴ In addition, β_2 receptor blockage leads to unopposed α -adrenergic activity, resulting in splanchnic vasoconstriction and decreased portal pressure. Nonselective β -blockers (nadolol, propranolol, timolol) are more effective than selective β_1 -blockers in reducing the hepatic venous pressure gradient.⁵ Nitrates (most commonly isosorbide mononitrate) reduce portal pressure by selective vasodilatation in the splanchnic circulation and also by reducing intrahepatic resistance.^{6,7} However, patients with advanced cirrhosis have marked vasodilatation, which leads to a decrease in arterial pressure and hepatic blood flow. This, when combined with the reduction of preload and cardiac output caused by nitrates, may have deleterious effects including deterioration of renal function.⁸ Thus, nitrates should not be used alone as therapy for portal hypertension. Conversely, drug intolerance and side effects can impede the use of medications.

BACKGROUND

Although there are many randomized, controlled trials that used various combinations of treatment for esophageal varices, there was no consensus on the treatment with regard to reduction of recurrent bleeding and death because of different criteria, study power, and endpoint inadequacy of the studies. To date, there were 3 meta-analyses⁹⁻¹¹ comparing sclerotherapy with pharmacotherapy. A meta-analysis by Pagliaro et al⁹ showed no significant difference in risk of recurrent bleeding or mortality with both treatment modalities. Meta-analyses by D'Amico et al¹⁰ and Bernard et al¹¹ found less recurrent variceal bleeding in the sclerotherapy group, but there was no significant difference in survival.

A meta-analysis by D'Amico et al¹⁰ comparing the combination of sclerotherapy and pharmacotherapy with sclerotherapy alone did show significantly lower rebleeding and mortality rates in the combination therapy group; however, the results should be interpreted cautiously because of significant heterogeneity. A meta-analysis by Maria et al¹² comparing pharmacotherapy with ligation for secondary prophylaxis of esophageal varices showed pharmacotherapy to be as effective as ligation.

Although there are many previous studies and meta-analyses, there was no meta-analysis comparing endoscopic procedures alone or in combination with pharmacotherapy with pharmacotherapy alone. This is important because clinical practice often combines several modalities in the treatment of an individual patient. The aims of our study

Capsule Summary

What is already known on this topic

- During the first 6 weeks after a variceal hemorrhage, there is a 30% to 40% chance for recurrent bleeding.
- Those who do rebleed have a 20% to 35% mortality rate.

What this study adds to our knowledge

- In a meta-analysis of 25 clinical trials on treatment of esophageal varices:
 - Pharmacotherapy was as effective as endoscopic therapy in preventing rebleeding and all-cause mortality.
 - Pharmacotherapy combined with endoscopy was more effective at reducing rebleeding than endoscopic intervention alone.

were to (1) compare the efficacy of pharmacotherapy with that of endoscopic therapy in reducing the incidence of rebleeding and death and (2) compare the additive effect of pharmacotherapy with that of endoscopic therapy on reducing the incidence of rebleeding and death.

METHODS

Data sources and study selection

We performed literature searches of the PubMed, EMBASE, and Cochrane Central databases up to November 2006 by using the key terms "endoscopic variceal ligation," "endoscopic sclerotherapy," "endoscopic variceal bleeding," and "esophageal and gastric varices" as our search terms. In addition, a manual search was performed of reference lists of published articles and abstracts. The inclusion criteria for selection of clinical trials for the meta-analysis were the following: (1) the trials need to be randomized, controlled trials comparing pharmacotherapy with or without sclerotherapy with sclerotherapy alone or pharmacotherapy with or without ligation with ligation alone; (2) the study participants should be older than 16 years of age with at least 1 previous episode of gastroesophageal bleeding; and (3) the studies need to have measured at least one of the following outcomes as their endpoint: the overall mortality, mortality caused by gastroesophageal bleeding, recurrence of bleeding, or recurrence of bleeding from esophageal varices. Studies comparing these outcomes in the primary prevention of gastroesophageal bleeding and those that included patients with gastric varices alone were excluded from our analysis.

Data extraction

Data extraction was done by 2 authors who independently abstracted study design information, study participant information, and results. We resolved discrepancies by repeated review and discussion. With our search terms,

a total of 172 studies were identified, but after applying our inclusion and exclusion criteria, 26 studies were eligible for meta-analysis. Of these, 7 studies¹³⁻¹⁹ compared the clinical benefit of sclerotherapy with that of pharmacotherapy, and 11 studies²⁰⁻³⁰ evaluated the combination of pharmacotherapy and sclerotherapy compared with sclerotherapy alone in treating esophageal varices. There were also 4 studies³¹⁻³⁴ comparing pharmacotherapy with ligation and 3 studies³⁵⁻³⁷ assessing the combined effect of pharmacotherapy and ligation and that of ligation alone. Romero et al³⁸ organized the only study that compared the efficacy of pharmacotherapy with that of the combination of sclerotherapy and ligation. In the current meta-analysis, patients receiving either sclerotherapy or band ligation were categorized into an endoscopy group. Then, patients receiving endoscopic therapy were compared with those receiving pharmacotherapy in terms of all 4 outcomes (overall mortality, mortality caused by gastroesophageal bleeding, recurrence of all-cause bleeding, and recurrence of bleeding from esophageal varices). The additive effect of pharmacotherapy and endoscopy versus endoscopy alone was also evaluated in these outcomes.

Statistical analysis

The heterogeneity of the studies was analyzed by Cochran's Q statistics by using the Comprehensive Meta-Analysis software (Biostat, Englewood, NJ). In our analysis of pharmacotherapy versus endoscopy, the studies were found to be homogeneous for all-cause mortality ($P = .41$) and mortality caused by bleeding ($P = .28$) and heterogeneous for the risk of rebleeding ($P = .001$) and rebleeding from varices ($P = .001$). In our analysis comparing the dual effect of endoscopy and pharmacotherapy with the effect of endoscopy alone, the studies were found to be homogeneous for all the 4 endpoints (all-cause mortality [$P = .97$], mortality caused by bleeding [$P = .94$], risk of all-cause rebleeding [$P = .09$], and risk of rebleeding from varices [$P = .5$]). Funnel plots were drawn based on standard error by log-risk ratio for all outcome measures. Inspection of these plots did not reveal any publication bias in our analysis. The Mantel-Haenszel fixed-effect model was used to calculate combined relative risks (RRs) for those outcomes when the studies were homogeneous, and the random-effect model was used when the studies were heterogeneous. A 2-sided α error $<.05$ was considered to be statistically significant ($P < .05$).

RESULTS

Study design and participants

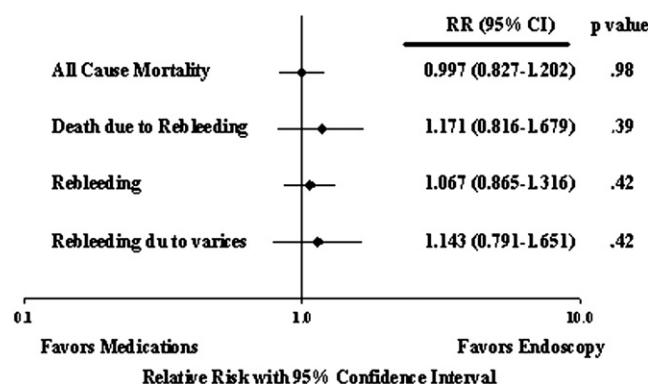
Clinical characteristics of patients included in the trials are described in Appendixes 1 through 5 available online at www.giejournal.org). The etiology of cirrhosis in all the trials was alcoholism (available online at www.giejournal.org) and virus related, except in 2 studies,^{28,30} in which it was

related to schistosomiasis. The β -blocker used was either propranolol or nadolol in these studies, with most of the trials opting for propranolol. Nadolol in combination with nitrates was used in 4 trials,^{18,31,32,38} and sucralfate was used in 1 study.³⁵ However, nadolol alone was used in 2 studies.^{22,24} The doses of β -blocker were titrated according to the pulse rate. The mean time interval between endoscopic sessions was 7 to 14 days except in 3 studies; it was 30 days in 2 studies^{23,29} and 90 days in the third study.²⁸ Although Dasarathy et al¹⁴ included patients only with Child-Pugh classes B and C, Alexandrino et al¹³ enrolled patients with Child-Pugh classes A and B.

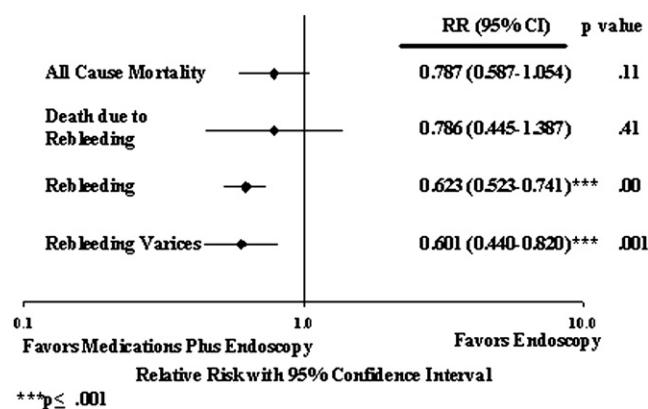
The definition of rebleeding and variceal bleeding varied in different studies. Rebleeding was defined as (1) hematemesis or melena with either a hemoglobin decrease of 2 to 3 mg/dL or requiring blood transfusion^{12,15,19,33}; (2) bleeding that required blood transfusion^{11,14,15,17,24,26,28,29,31}; (3) hematemesis or melena^{13-18,20,23,25,30,33}; (4) endoscopic findings such as spurring or oozing varix, adherent clot, and esophageal varices with red spots²¹; (5) endoscopic findings such as active bleeding or the presence of blood in the stomach in a patient with an esophageal varix.³⁴ Variceal bleeding is defined as (1) an actively bleeding varix, (2) adherent clots or fibrin plug on varices,^{13,15,17,20,26,28} (3) bleeding along with a decrease in hemoglobin of more than 2 mg/dL or requiring more than 2 units of blood and gastroesophageal varices as the only source of bleeding,¹⁷ and (4) the presence of hematemesis or melena.³¹

Pharmacological versus endoscopic therapy

A total of 12 studies including 1252 patients evaluated the clinical benefit of pharmacotherapy and that of endoscopic intervention in reducing mortality and other adverse GI events in patients with esophageal varices (Table 1). These trials assessed the RR of these outcomes with medications compared with that of sclerotherapy in 7 studies¹³⁻¹⁹ and of band ligation in 4 studies.³¹⁻³⁴ Romero et al³⁸ assessed the RR by comparing the combination of sclerotherapy ligation to pharmacotherapy.


All-cause mortality was lower with endoscopy in 6 studies¹³⁻¹⁸ and with pharmacotherapy in 4 studies,^{18,31,32,34} but the risk reduction was not statistically significant with the pooled RR ratio of 0.997 (95% CI, 0.827-1.202; $P = .98$). Although the risk of death caused by bleeding was lower with endoscopy in 5 studies,^{11,14,15,19,38} only 1 study¹⁴ found a statistically significant risk reduction ($P = .035$) of death caused by bleeding. Medications were effective in reducing the risk of death caused by bleeding in 5 studies,^{16-18,31,34} but the combined RR showed no statistically significant difference between endoscopic and pharmacotherapy (RR 1.171; 95% CI, 0.816-1.67; $P = .391$).

Of 12 studies, the risk of rebleeding from all causes was lower with endoscopic therapy in 7 studies,^{13,14,16,19,31,34,38} whereas in the other 5 studies, it was lower with


TABLE 1. Results of the endpoints in the studies included in the meta-analysis

Study	Rebleeding (%)			Rebleeding from varices (%)			Mortality (%)			Mortality caused by bleeding (%)						
	T	C	RR (95% CI)	P value	T	C	RR (95% CI)	P value	T	C	RR (95% CI)	P value	T	C	RR (95% CI)	P value
M vs S																
Dasarathy et al ¹⁴	67	42	1.60 (1.07-2.4)	.02	NG				41	22	1.86 (0.97-3.55)	.06	30	11	2.74 (1.08-6.98)	.04
Westaby et al ¹⁹	54	45	1.20 (0.82-1.18)	.5	NG				42	37	1.12 (0.71-1.79)	.61	25	14	1.75 (0.79-3.88)	1.67
Fleig et al ¹⁵	35	47	0.74 (0.42-1.32)	.31	27	28	1.06 (0.55-2.22)	.9	15	8	1.77 (0.46-6.82)	.41	3	0	3.17 (1.3-75.2)	.47
Rossi et al ¹⁷	48	50	0.96 (0.56-1.67)	.89	41	35	1.17 (0.59-2.36)	.64	36	23	1.12 (0.44-2.9)	.81	15	19	0.77 (0.23-2.56)	.67
Teres et al ¹⁶	64	45	1.42 (1.01-2.01)	.05	60	40	1.52 (1.04-2.22)	.03	40	36	1.10 (0.69-1.75)	.70	15	17	0.90 (0.4-2.05)	.80
Villanueva et al ¹⁸	26	53	0.48 (0.27-0.85)	.01	21	51	0.41 (0.21-0.78)	.01	9	21	0.45 (0.15-1.33)	.15	0	46	0.20 (0.01-4.04)	.29
Alexandrino et al ¹³	85	64	1.32 (0.98-1.78)	.07	62	39	2.12 (1.15-3.91)	.15	32	29	1.22 (0.6-2.52)	.59	9	3	3.0 (0.33-27.28)	.32
M+S vs S																
Jensen and Krarup ²³	20	75	0.27 (0.09-0.76)	.01	NG				7	6	1.07 (0.73-5.57)	.96	0	6	0.35 (0.02-8.07)	.51
Lundell et al ²⁹	58	45	1.27 (0.70-2.31)	.42	NG				5	23	0.23 (0.03-1.81)	.16	NG	NG		
Vinel et al ²⁶	18	40	0.45 (0.20-0.98)	.45	10	29	0.36 (0.12-1.04)	.06	13	14	0.9 (0.28-2.84)	.85	10	8	1.19 (0.3-5.0)	.80
Avegrinos et al ²¹	49	87	0.56 (0.40-0.77)	.00	42	62	0.68 (0.44-1.03)	.07	18	23	0.79 (0.33-1.85)	.59	6	5	1.33 (0.23-7.60)	.75
Elsayed et al ²⁸	14	38	0.37 (0.19-0.70)	.00	NG				13	14	0.9 (2.17-2.82)	.8	NG			
Bertoni et al ²²	7	28	0.25 (0.03-1.97)	.19	NG				7	21	0.33 (0.04-2.82)	.31	NG			
Vickers et al ²⁵	43	41	1.06 (0.61-1.8)	.83	NG				23	26	0.87 (0.39-1.94)	.74	10	11	0.87 (0.23-3.22)	.83
Dowidar et al ³⁰	25	30	0.83 (0.30-2.29)	.72	20	20	1.0 (0.29-3.45)	1.0	20	30	0.67 (0.22-2.00)	.47	NG			
Westaby et al ²⁷	27	30	0.90 (0.38-2.14)	.82	NG				35	26	1.34 (0.58-3.05)	.49	8	7	1.04 (9/16-6.84)	.17
Acharya et al ²⁰	17	21	0.80 (0.37-1.71)	.57	10	11	0.97 (0.33-2.81)	.95	9	12	1.69 (0.23-2.04)	.50	5	5	0.97 (0.20-4.59)	.97
Gerunda et al ²⁴	20	23	0.86 (0.32-2.25)	.75	NG				3	10	0.33 (0.04-3.02)	.33	NG			
M vs L																
Lo et al ³¹	57	38	1.5 (1.01-2.20)	.04	43	20	2.13 (1.19-3.82)	.01	73	25	0.52 (0.24-1.15)	.10	3	6	0.49 (0.09-2.58)	.40
Sarin et al ³⁴	27	14	1.94 (0.97-3.89)	.06	23	7	3.23 (1.24-8.39)	.01	6	8	0.71 (0.21-2.42)	.59	1	1	1.08 (0.07-16.85)	.96
Villanueva et al ³²	33	49	0.69 (0.46-1.03)	.07	28	44	0.63 (0.40-0.99)	.04	32	42	0.77 (0.50-1.18)	.23	5	14	0.40 (1.31-1.21)	.11
Patch et al ³³	37	53	0.70 (0.45-1.09)	.12	22	35	0.61 (0.32-1.16)	.13	33	33	1.00 (0.58-1.73)	1.00	NG			
M+L vs L																
Lo et al ³⁵	23	47	0.50 (0.29-0.84)	.01	10	24	0.41 (0.17-0.99)	.05	17	32	0.69 (0.34-1.41)	.31	7	15	0.46 (0.15-1.41)	.17
De la Pena et al ³⁶	14	11	0.37 (0.16-0.86)	.02	9	27	0.34 (0.11-1.01)	.05	12	11	0.71 (0.23-2.16)	.55	0	3	0.29 (0.01-6.86)	.44
Jain et al ³⁷	13	22	0.59 (0.27-1.28)	.18	NG	NG			NG	NG			NG	NG		
M vs L+S																
Romero et al ³⁸			1.17 (0.93-1.48)	.18			1.22 (0.87-1.73)	.24			1.00 (0.47-2.16)	.99			1.37 (0.52-3.58)	.52

T, Treatment group; C, control group; M, medications; S, sclerotherapy; L, ligation; NG, not given.

Figure 1. Summary of RRs: pharmacotherapy versus endoscopic therapy.

Figure 2. Summary of RRs: pharmacotherapy plus endoscopic therapy versus endoscopic therapy alone.

pharmacological therapy. The overall pooled RR ratio was 1.067 (95% CI, 0.865-1.316; $P = .546$). The risk of rebleeding from varices was found to be lower with endoscopy in 6 studies,^{13,15,17,31,33,38} with a statistically significant reduction seen in 4 of them.^{13,16,31,34} Three studies^{18,32,33} found a decreased risk of rebleeding from varices with medications. The overall combined RR did not reveal any significant difference between the treatment modalities (RR 1.143; 95% CI, 0.791-1.651; $P = .476$) (Fig. 1).

Hence, based on the pooled RR of each endpoint, endoscopic therapy has no significant advantage over pharmacotherapy, and treatment of esophageal varices with medications is as effective as endoscopy in preventing adverse clinical outcomes.

Pharmacotherapy plus endoscopy versus endoscopy alone

Fourteen randomized, controlled trials^{20-30,35-37} (2 from abstracts^{24,37}) that included 1069 patients compared the effectiveness of combining pharmacotherapy with endos-

copy compared with that of endoscopy alone. Eleven of these²⁰⁻³⁰ assessed the dual effect of pharmacotherapy and sclerotherapy and the effect of sclerotherapy alone, and 3 trials³⁵⁻³⁷ evaluated the combination of pharmacotherapy and ligation with ligation alone (Table 1). Propranolol was the β -blocker used in most of the trials,^{20,21,23,24-29,37} with nadolol and sucralfate being used in 4^{20,33,34} and 1³⁵ randomized, controlled trials, respectively.

All-cause mortality was found to be lower with combination therapy in 11 trials^{20-22,24-26,28-30,35,36} and with endoscopy in 2 trials,^{23,27} but collectively there was no statistically significant difference between the groups (RR 0.787; 95% CI, 0.587-1.054; $P = .108$). Three trials^{23,35,36} found a decreased risk of death caused by bleeding with combination therapy, and 2 trials^{21,26} found this risk to be lower with endoscopy. The overall RR ratio did not show any difference between the groups (RR 0.786; 95% CI, 0.445-1.387; $P = .405$) (Fig. 2).

In our meta-analysis, the risk of all-cause rebleeding and rebleeding from varices is significantly different in both of the treatment arms. The RR of rebleeding was decreased with combination therapy in 11 studies,^{20-24,26,28,30,35-37} significantly in 6 of them,^{21,23,26,28,36,37} with an overall RR of 0.62 (95% CI, 0.52-0.74). The cumulative risk of rebleeding from varices was also significantly lower with combination therapy (RR 0.60; 95% CI, 0.44-0.82).

DISCUSSION

After an initial variceal hemorrhage, the frequency of recurrent bleeding ranges from 30% to 40% in the first 6 weeks.³⁹ The risk is maximal in the first 5 days and decreases slowly over the first 6 weeks. The risk of rebleeding depends on the severity of liver disease, variceal size, concomitant renal failure, continued alcoholism, and the presence of hepatoma.⁴⁰ There is a close correlation between increased portal pressure and the risk of recurrent bleeding and survival rate.⁴¹

β -Blockers, sclerotherapy and band ligation are all effective therapies in secondary prevention of variceal bleeding.⁴² However, rebleeding rates are as high as 50% after repeat sclerotherapy,⁴³ and sclerotherapy has been replaced almost universally by endoscopic variceal ligation. Although endoscopic ligation achieves rapid variceal obliteration, studies have shown that rebleeding rates from esophageal varices range from 13% to 51%.^{44,45} Moreover, portal pressure was increased in 68% of patients undergoing repeat endoscopic ligation.⁴⁶ Conversely, β -blockers have been shown to decrease portal pressure,⁴⁷ prevent portal hypertensive gastropathy,⁴⁸ and decrease post-sclerotherapy variceal recurrence.^{49,50} β -Blockers attained target reduction of hepatic pressure gradients in approximately one third of patients.⁵¹

Pharmacotherapy versus endoscopy

In our meta-analysis of 12 studies comparing pharmacotherapy with endoscopic therapy, pharmacotherapy was as effective as endoscopic procedures in decreasing the risk of all-cause mortality, death caused by bleeding, the risk of rebleeding, and rebleeding from varices in the patients included in these studies. This is consistent with the study by Sarin et al,³⁴ which found that medications were as effective as endoscopic therapy; however, a subset of their patients with noncirrhotic portal fibrosis had increased risk of rebleeding with medications. The study by Dasarathy et al,¹⁴ which included decompensated patients with cirrhosis (Child classes B and C), showed that the sclerotherapy group had significant reduction in all-cause mortality, mortality caused by bleeding, and the risk of rebleeding. An increased risk of rebleeding in a study by Lo et al³¹ could be attributed to large varices in the pharmacotherapy group of patients. Alexandrino et al¹³ demonstrated an increased risk of rebleeding with propranolol compared with sclerotherapy. However, patients in this study were randomized 15 days after their index bleed, and strict compliance to medications was not observed. Villanueva et al¹⁸ matched both the treatments groups with respect to prognostic variables such as the severity of liver disease, the interval between initial bleed and randomization, and abstinence from alcohol. In their study, pharmacotherapy significantly reduced risk of rebleeding and rebleeding from varices. Thus, with evidence from the above studies, we conclude that when all the prognostic variables are matched, β -blockers are as effective as endoscopic procedures in reducing mortality and rebleeding.

Pharmacotherapy plus endoscopy versus endoscopy

In our meta-analysis of 13 studies evaluating the additive effect of pharmacotherapy compared with that of endoscopy, we found that combination therapy significantly reduced the risk of rebleeding and rebleeding from varices compared with endoscopy alone. However, no significant benefit was observed in terms of all-cause mortality or mortality caused by bleeding. In the study by De la Pena et al,³⁶ apart from decreasing the risk of bleeding, combining pharmacotherapy and ligation therapy slowed the frequency of variceal reappearance and decreased the number of endoscopic sessions. Lo et al³⁷ found a significant decrease in rebleeding risk among patients treated with triple therapy (nadolol, sucralfate, and ligation). This beneficial effect could be attributed to the reduction of mucosal ulcers because of sucralfate and reduction of variceal bleeding caused by the lowering of portal pressure by β -blockers.

Study limitations

Our meta-analysis has limitations intrinsic to this type of analysis. The amount of the pooled data is important

because the results become more reliable and the margin for error decreases as the amount of data increases. Trials with negative findings are less likely to be published, and some of the data used in our meta-analysis were extracted from published abstracts, which could have affected our results. Moreover, the heterogeneity of patient populations and different treatment protocols may also be a concern in our meta-analysis. In addition, widely different definitions of what constitutes rebleeding used by various studies in the analysis can confound any conclusions from this data set. The statistical “heterogeneity” of the results obtained by endoscopic therapy is owing to the lack of rules regarding its application.

REFERENCES

1. Terblanche J, Burroughs AK, Hobbs KE. Controversies in the management of bleeding esophageal varices. *N Engl J Med* 1989;320:1393-8.
2. Thompson ABR, Shaffer EA. First principles of gastroenterology, 3rd ed. 2005. Oakville, Ontario: Canadian Association of Gastroenterology; Chapter 5, p. 89.
3. de Franchis R. Portal hypertension II. Proceedings of the Second International Consensus Workshop on Definitions, Methodology and Therapeutic Strategies. Oxford: Blackwell Science Ltd; 1996.
4. Lowe R, Grace N. Primary prophylaxis of variceal hemorrhage. *Clin Liver Dis* 2001;5:665-76.
5. Mills PR, Rae AP, Farah DA, et al. Comparison of three adrenoreceptor blocking agents in patients with cirrhosis and portal hypertension. *Gut* 1984;25:73-8.
6. Dawson J, Gertsch P, Moissmann F, et al. Endoscopic variceal pressure measurements: response to isosorbide dinitrate. *Gut* 1985;26:843-7.
7. Navasa M, Chesta J, Bosch J, et al. Reduction of portal pressure by isosorbide mononitrate in patients with cirrhosis, effects on splanchnic and systemic hemodynamics and liver function. *Gastroenterology* 1989;96:1110-8.
8. Moreau R, Lebrec D. Nitrovasodilators and portal hypertension. *J Hepatol* 1990;10:263-7.
9. Pagliaro L, Burroughs AK, Sorensen TIA, et al. Therapeutic controversies and randomized trials (RCTs): prevention of bleeding and re-bleeding in cirrhosis. *Gastroenterol Int* 1989;2:71-84.
10. D'Amico G, Pagliaro L, Bosch J. The treatment of portal hypertension: a meta-analytic view. *Hepatology* 1995;22:332-54.
11. Bernard B, Lebrec D, Mathurin P, et al. Propranolol and sclerotherapy in the prevention of gastrointestinal re-bleeding in patients with cirrhosis: a meta-analysis. *J Hepatol* 1997;26:312-24.
12. Maria M, Thalheimer U, Burroughs A. Prevention of variceal re-bleeding. *Medscape Gen Med* 2003;5:278.
13. Alexandrino PT, Alves MM, Correia JP. Propranolol or endoscopic sclerotherapy in the prevention of recurrence of variceal bleeding, a prospective randomized controlled trial. *J Hepatol* 1988;7:175-85.
14. Dasarathy S, Dwivedi M, Bhargava KD, et al. A prospective randomized trial comparing repeated endoscopic sclerotherapy and propranolol in decompensated (Child class B and C) Cirrhotic patients. *Hepatology* 1992;16:89-94.
15. Fleig WE, Stange EF, Hunecke R, et al. Prevention of recurrent bleeding in cirrhotics with recent variceal hemorrhage: prospective, randomized comparison of propranolol and sclerotherapy. *Hepatology* 1987;7:355-61.
16. Teres J, Bosch J, Bordas J, et al. Propranolol versus sclerotherapy in preventing variceal re-bleeding, a randomized controlled trial. *Gastroenterology* 1993;105:1508-14.

17. Rossi V, Cales P, Burtin P, et al. Prevention of recurrent variceal bleeding in alcoholic cirrhotic patients, a prospective controlled trial of propranolol and sclerotherapy. *J Hepatol* 1991;12:283-9.
18. Villanueva C, Balanzo J, Novella MT, et al. Nadolol plus isosorbide mononitrate compared with sclerotherapy for the prevention of variceal re-bleeding. *N Engl J Med* 1996;334:1624-9.
19. Westaby D, Polson RJ, Gimson AE, et al. A randomized controlled trial of oral propranolol compared with injection sclerotherapy for the long term management of variceal bleeding. *Hepatology* 1990;11:353-9.
20. Acharya SK, Dasarathy S, Saksena S, et al. A prospective randomized study to evaluate propranolol in patients undergoing long term endoscopic sclerotherapy. *J Hepatol* 1993;19:291-300.
21. Avegrinos A, Rekoumis G, Klonis C. Propranolol in the prevention of recurrent upper gastrointestinal bleeding in patients with cirrhosis undergoing endoscopic sclerotherapy. A randomized controlled trial. *J Hepatol* 1993;19:301-11.
22. Bertoni G, Fornaciari G, Beltrami M, et al. Nadolol for prevention of variceal re-bleeding during the course of endoscopic injection sclerotherapy: a randomized pilot study. *J Clin Gastroenterol* 1990;12:364-5.
23. Jensen LS, Krarup N. Propranolol in prevention of re-bleeding from oesophageal varices during the course of endoscopic sclerotherapy. *Scand J Gastroenterol* 1989;24:339-45.
24. Gerunda GE, Neri D, Zangrandi F, et al. Nadolol does not reduce early rebleeding in cirrhosis undergoing endoscopic variceal sclerotherapy: a multicenter randomized controlled trial [abstract]. *Hepatology* 1990;12:988.
25. Vickers C, Rhodes J, Chesner I, et al. Prevention of re-bleeding from esophageal varices, two year follow up of a prospective controlled trial of propranolol in addition to sclerotherapy. *J Hepatol* 1994;21:81-7.
26. Vinel JP, Lamouliatte H, Cales P, et al. Propranolol reduces the re-bleeding rate during endoscopic sclerotherapy before variceal obliteration. *Gastroenterology* 1992;102:1760-3.
27. Westaby D, Melia W, Hegarty J, et al. Use of propranolol to reduce the re-bleeding rate during injection sclerotherapy prior to variceal obliteration. *Hepatology* 1986;6:673-5.
28. Elsayed SS, Shiha G, Hamid M, et al. Sclerotherapy versus sclerotherapy and propranolol in the prevention of re-bleeding from esophageal varices, a randomized study. *Gut* 1996;38:770-4.
29. Lundell L, Leth R, Lind T, et al. Evaluation of propranolol for prevention of recurrent bleeding from esophageal varices between sclerotherapy sessions. *Acta Chir Scand* 1990;156:711-5.
30. Dowidar N, Hafez A, Abdel Baki M. Endoscopic sclerotherapy of oesophageal varices due to hepato-splenic schistosomiasis, a randomized controlled trial evaluating the effect of adjuvant propranolol therapy. *J Egypt Soc Parasitol* 2005;35:773-86.
31. Lo GH, Chein WC, Chen MS, et al. Banding ligation versus nadolol and isosorbide mononitrate for the prevention of esophageal variceal re-bleeding. *Gastroenterology* 2002;123:728-34.
32. Villanueva C, Minana J, Ortiz J, et al. Endoscopic ligation compared with combined treatment with nadolol and isosorbide mononitrate to prevent recurrent variceal bleeding. *N Engl J Med* 2001;345:647-55.
33. Patch D, Sabin CA, Goulis J, et al. A randomized controlled trial of medical therapy versus endoscopic ligation for the prevention of variceal re-bleeding in patients with cirrhosis. *Gastroenterology* 2002;123:1013-9.
34. Sarin SK, Wadhawan M, Gupta R, et al. Evaluation of endoscopic variceal ligation (EVL) versus propranolol plus isosorbide mononitrate/nadolol (ISMN) in the prevention of variceal re-bleeding. Comparison of cirrhotic and non-cirrhotic patients. *Dig Dis Sci* 2005;50:1538-47.
35. Lo GH, Lai KH, Cheng JS, et al. Endoscopic variceal ligation plus nadolol and sucralfate compared with ligation alone for the prevention of variceal re-bleeding: a prospective randomized trial. *Hepatology* 2000;32:461-5.
36. de la Peña J, Brullet E, Sanchez-Hernandez ES, et al. Variceal ligation plus nadolol compared with ligation for prophylaxis of variceal rebleeding. A multicenter trial. *Hepatology* 2005;41:572-8.
37. Jain A, Kumar A, Tyagi P, et al. Endoscopic variceal ligation (EVL) plus propranolol (P) and isosorbide mononitrate (ISMN) versus endoscopic variceal ligation alone in secondary prophylaxis of variceal bleeding. A prospective randomized controlled trial. Presented at American College of Gastroenterology 2006; October 20-25, 2006; Las Vegas, Nevada.
38. Romero G, Kravetz D, Argonz J, et al. Comparative study between nadolol and 5-isosorbide mononitrate vs. endoscopic band ligation plus sclerotherapy in the prevention of variceal re-bleeding in cirrhotic patients. A randomized controlled trial. *Aliment Pharmacol Ther* 2006;24:601-11.
39. Monitinho E, Escorsell A, Bandi JC, et al. Prognostic value of early measurements of portal pressure, presence of gastroesophageal varices and variceal bleeding. *Gastroenterology* 1999;117:626-31.
40. Infante-Rivard C, Esnaola S, Villeneuve JP. Role of endoscopic sclerotherapy in the long term management of variceal bleeding, a meta-analysis. *Gastroenterology* 1989;96:1087-92.
41. Lo GH, Lai KH, Cheng JS, et al. Emergency banding ligation versus sclerotherapy for the control of active bleeding from esophageal varices. *Hepatology* 1997;25:1101-4.
42. D'Amico G, Luca A. Natural history clinical-hemodynamic correlations. Prediction of the risk of bleeding. *Ballieres Clin Gastroenterol* 1997;11:243-56.
43. Jalan R, Forrest EH, Stanley AJ, et al. A randomized trial comparing transjugular intrahepatic portosystemic stent-shunt with variceal band ligation in the prevention of re-bleeding from esophageal varices. *Hepatology* 1997;26:1115-22.
44. Lo GH, Liang HL, Lai KH, et al. The impact of endoscopic variceal ligation on the pressure of the portal venous system. *J Hepatol* 1995;24:74-80.
45. Lebrec D, Nouel O, Cobric M, et al. Propranolol—a medical treatment for hypertension? *Lancet* 1980;2:180-2.
46. Hosking SW, Kennedy HJ, Seddon I, et al. The role of propranolol in congestive gastropathy of portal hypertension. *Hepatology* 1987;7:437-41.
47. Jensen LS, Krarup N. Propranolol may prevent recurrence of esophageal varices after obliteration by endoscopic sclerotherapy. *Scand J Gastroenterol* 1989;24:339-45.
48. Elsayed SS, Shiha G, Hamid M, et al. Sclerotherapy versus sclerotherapy and propranolol in the prevention of re-bleeding from oesophageal varices, a randomized study. *Gut* 1996;38:770-4.
49. Garcia Pagan JC, Escorsell A, Monitinho E, et al. Influence of pharmacological agents on portal hemodynamics basis for its use in the treatment of portal hypertension. *Semin Liver Dis* 1999;19:427-38.
50. Feu F, García Pagan JC, Bosch J, et al. Relationship between portal pressure response pharmacotherapy and risk of recurrent variceal hemorrhage in patients with cirrhosis. *Lancet* 1995;346:1056-9.
51. Bosch J, Mastai R, Kravetz D, et al. Effects of propranolol on azygous venous blood flow and hepatic and systemic hemodynamics in patients with cirrhosis. *Hepatology* 1984;4:1200-5.

Received August 14, 2008. Accepted February 26, 2009.

Current affiliations: VA Medical Center (M.R., P.D.S., J.M., E.Z.), North Chicago, Illinois, St. Vincent Mercy Medical Center (S.K.), Toledo, Ohio.

Reprint requests: Mamata Ravipati, MD, VA Medical Center, 3001 Green Bay Road, North Chicago, IL 60064.

If you would like to chat with an author of this article, you may contact him at mamata.ravipati1@va.gov.

APPENDIX 1. Clinical characteristics of patients receiving β -blocker therapy versus those receiving endoscopic sclerotherapy

Study	No. pts	Mean age, y	Male	Alcohol	Viral	Child-Pugh score		Type of β -blocker	Mean time interval
						β /ES	A	B	C
Dasarathy et al ¹⁴	46/45	47/43	40/40	12/13	13/10	0/0	160 mg/day	1% P	10
						30/30			
						16/15			
Westaby et al ¹⁹	52/56	54/52	31/34	32/26	2/6	22/22	120 mg/day	NG	7-28
						30/34			
						0/0			
Fleig et al ¹⁵	34/36	49/44	26/22	27/31	5/5	5/5	161 mg/day	1% P	3-4
						17/21			
						12/9			
Rossi et al ¹⁷	27/26	54/52	21/11	27/26	0/0	NR	54 mg BID	1% P	5-7
Teres et al ¹⁶	58/58	59/57	40/35	33/31	NG	NR	103 mg BID	5% EO	7
Villanueva et al ¹⁸	43/43	58/60	29/29	25/24	NG	9/11	80-40 mg BID	5% EO	0, 4, 10, 30
						27/22			
						7/10			
Alexandrino et al ¹³	34/31	50/45	28/24	26/26	NG	24/23	130 mg/day	5% EO	4
						10/8			
						0/0			

β /ES, β -Blocker therapy/endoscopic sclerotherapy; pts, patients; P, polidocanol; NG, not given; EO, ethanolamine oleate; BID, twice a day.

APPENDIX 2. Clinical characteristics of patients receiving β -blocker therapy + endoscopic sclerotherapy versus those receiving pharmacotherapy

Study	No. pts	β /ES			Child-Pugh score		Mean β -blocker dose	Type of sclerosant	Mean time interval between sessions (days)
		Mean age, y	Male	Alcohol	A	B C			
Jensen and Krarup ²³	15/16	46/47	15/12	12/14	1/4	4/4	160 mg/day	2% E	30
						7/7			
						4/5			
Lundell et al ²⁹	19/22	58/55	9/13	11/15	0/0	4/5	100 mg BID	1% E	30
						6/5			
						9/12			
Vinel et al ²⁶	39/35	54.6/57	30/28	32/33	0/0	NG	54.6 mg/day	1% P	0, 1, 3
Avegrinos et al ²¹	45/40	57.8/58.6	29/32	9/13	25/18	33/30	96.5 mg/day	5% EA	7
						8/8			
						4/2			
Elsayed et al ²⁸	70/70	43/43	58/60	—	12/1	38/39	90 mg initial and 30 mg/day maintenance	5% EA	90
						20/20			
						12/11			
Bertoni et al ^{22*}	14/14	63.4/55	8/10	9/2	2/4	5/5	40-120 mg/day	1% P	NG
						4/5			
						5/5			
Dowidar et al ³⁰	20/20	49/43	17/19	0/0	0/0	11/7	40 mg/day	2.5% EA	7
						9/11			
						0/2			
Acharya et al ²⁰	58/56	35.8/33.6	49/48	3/4	4/20	37/31	160 mg/day	1% P	10
						31/25			
						0/0			
Gerunda et al ^{24*}	30/30						80 mg/day	NG	7
Vickers et al ²⁵	39/34	57/53	25/18	13/12	2/3	11/8	160 mg/day	2% EA	21
						20/17			
						8/9			
Westaby et al ²⁷	26/27	46/51	16/17	10/9	3/4	5/2	120 mg/day	NG	7 days for 3 wk, thereafter 21 days
						6/13			
						10/8			

β +ES/ES, β -Blocker therapy + endoscopic sclerotherapy/endoscopic sclerotherapy only; pts, patients; E, ethoxysclerol; P, polidocanol; EA, ethanolamine; NG, not given.

*Trials used nadolol.

APPENDIX 3. Clinical characteristics of patients receiving β -blocker therapy versus those undergoing endoscopic variceal ligation

Study	No. pts	Mean age, y	β /ES			Child-Pugh score A B C	Mean β -blocker dose (mg/day)	No. bands	Mean time interval between sessions (days)
			Male	Alcohol	Viral				
Lo et al ^{31*}	61/60	51/52	47/46	22/16	36/39	13/13	40	NG	21-28
						35/35			
						13/12			
Sarin et al ³⁴	66/71	36.2/35/8	45/51	15/18	23/25	27/35	240	2-10	14
						28/26			
						11/10			
Villanueva et al ^{32*}	72/72	52.4+13.4	43/47	33/30	24/26	19/11	80	8	14-21
						39/43			
						14/18			
Patch et al ³³	51/51	50.7/52.4	35/35	32/36	—	8/5	80	NG	14
						19/18			
						24/28			

β /EVL, β -Blocker therapy/endoscopic variceal ligation; pts, patients; NG, not given.

APPENDIX 4. Clinical characteristics of patients receiving β -blocker therapy + endoscopic variceal ligation versus those undergoing endoscopic variceal ligation only

Study	No. pts	β +EVL/EVL				Child-Pugh score*			Mean time interval between sessions (days)
		Mean age	Male	Alcohol	Viral	A	B	C	
Lo et al ^{31,35†‡}	60/62	53/51	45/49	17/20	41/41	11/12	60	1-2	21
								12/18	
								19/22	
De la Pena et al ^{36†}	43/37	60/60	33/27	27/26	12/8	6/6	58	NG	10-12
								25/20	
								2/11	
Jain et al ³⁷	61/67	NG	NG			26/24	114.3		
								23/37	
								12/6	

β +EVL/EVL, β -Blocker therapy + endoscopic variceal ligation/endoscopic variceal ligation only; pts, patients; Pugh score, A, B, C, β , patients treated with β -blockers; NG, not given.

*The Child-Pugh class was determined on the basis of data collected at randomization. Class A denotes good hepatic function (a score of 5 or 6), class B intermediate function (a score of 7 to 9), and class C poor function (a score of 10 to 12).

†Trials used nadolol.

‡Trials used sucralfate.

APPENDIX 5. Clinical characteristics of patients receiving pharmacotherapy versus those undergoing endoscopic variceal ligation + sclerotherapy

Study	β /EVL+ES					Mean β - blocker dose (mg/day)	Mean no. bands	Type of sclerosant	Mean time interval between sessions (days)
	No. pts	Age, y	Male	Alcohol	Viral				
Romero et al ³⁸	57/52	51/53	37/35	30/24	8/7	40	10	2% P	14

β /EVL+ES, β -Blocker therapy/endoscopic variceal ligation + endoscopic sclerotherapy; pts, patients; P, polidocanol.