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Abstract

Background Irritable bowel syndrome (IBS) is a functional

disorder of the gastrointestinal tract characterized by

abdominal discomfort, pain and changes in bowel habits,

often associated with psychological/psychiatric disorders. It

has been suggested that the development of IBS may be

related to the body’s response to stress, which is one of the

main factors that can modulate motility and visceral per-

ception through the interaction between brain and gut (brain–

gut axis). The present review will examine and discuss the

role of serotonin (5-hydroxytryptamine, 5-HT) receptor

subtypes in the pathophysiology and therapy of IBS.

Methods Search of the literature published in English

using the PubMed database.

Results Several lines of evidence indicate that 5-HT and

its receptor subtypes are likely to have a central role in the

pathophysiology of IBS. 5-HT released from enterochro-

maffin cells regulates sensory, motor and secretory func-

tions of the digestive system through the interaction with

different receptor subtypes. It has been suggested that pain

signals originate in intrinsic primary afferent neurons and

are transmitted by extrinsic primary afferent neurons.

Moreover, IBS is associated with abnormal activation of

central stress circuits, which results in altered perception

during visceral stimulation.

Conclusions Altered 5-HT signaling in the central ner-

vous system and in the gut contributes to hypersensitivity

in IBS. The therapeutic effects of 5-HT agonists/antago-

nists in IBS are likely to be due also to the ability to

modulate visceral nociception in the central stress circuits.

Further studies are needed in order to develop an optimal

treatment.

Keywords Irritable bowel syndrome � Serotonin �
Serotonin receptors � Brain–gut axis

Introduction

Irritable bowel syndrome (IBS) is a multifactorial disorder,

in which psychological abnormalities are significant factors

contributing to both pathogenesis and clinical course.

Serotonin (5-hydroxytryptamine, 5-HT) is likely to have a

predominant role in the pathophysiology of IBS, through a

variety of actions exerted in the central nervous system

(CNS) and the enteric nervous system (ENS) [1, 2]. Dys-

functions of the central or peripheral serotonergic system

can be involved in the pathophysiology of IBS, as sug-

gested also by the therapeutic effects of both tricyclic
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antidepressants and selective serotonin reuptake inhibitors

[3].

Elevated plasma levels of 5-HT have been described in

patients with diarrhea-predominant IBS (D-IBS), as com-

pared with control subjects [4, 5]. Spiller et al. [6] reported

an increased density of enterochromaffin cells (ECs) in

rectal biopsies obtained from patients with D-IBS. In

contrast, relatively low post-prandial plasma 5-HT levels

have been detected in patients with constipation-predomi-

nant IBS (C-IBS) [7].

5-HT, released in the gut from ECs, regulates sen-

sory, motor and secretory functions of the digestive

system [8] through interactions with intrinsic and

extrinsic nervous pathways. Intrinsic innervation to the

gut is supplied by neurons of the ENS, including the

myenteric and submucosal plexus. Extrinsic innerva-

tion is provided by the autonomic nervous system (both

sympathetic and parasympathetic), and it is arranged to

work in a bi-directional way: the brain can affect the

ENS functions through the branches of the autonomous

nervous system and, conversely, the gut can signal to

the brain via extrinsic primary afferent neurons

(EPANs), whose cell bodies are located in the ganglia

of cranial nerves (e.g., ganglion nodosum and petro-

sum) or dorsal roots. Nociceptive signals are transmit-

ted from abdominal viscera to specific laminae of the

dorsal horns. Then, synaptic inputs activate specific

second-order spinal neurons, leading to activation of

specific brain areas. In parallel, ascending visceral

nociceptive transmission is modulated by supraspinal

structures (e.g., periaqueductal gray, raphe nucleus,

locus coeruleus, thalamic regions), which either inhibit

or facilitate nociceptive signaling through descending

pathways.

Serotonergic, noradrenergic and dopaminergic fibers are

the major components of these efferent descending pro-

jections. In this context, it has been suggested that visceral

hypersensitivity in patients with IBS could be related to an

abnormal signaling in the descending facilitatory pathway

[9]. 5-HT has been found to exert opposite actions on

intestinal motor activity and peristaltic reflex. On one hand,

it can stimulate contractions through the release of ace-

tylcholine from cholinergic neurons. On the other hand, it

can facilitate enteric smooth muscle relaxation both by

release of nitric oxide from nitrergic neurons and via a

direct relaxation of smooth muscles [8].

The different gut effects of 5-HT are mediated by dif-

ferent serotonergic receptor subtypes located in the CNS

[10], enteric neurons [11], gastrointestinal (GI) smooth

muscle [12, 13] and secreting epithelial cells [14].

The present review article examines and discusses the

role of 5-HT receptor subtypes in the pathophysiology and

therapy of IBS.

5-HT receptors in the CNS and GI tract

5-HT exerts its biological activity through interaction with

different receptors, currently classified into 7 groups on the

basis of their structure, transduction mechanism and

pharmacological profile [10, 14–16]: 5-HT1–7 (Table 1).

Most of these receptors are expressed in the GI tract, and

their stimulation plays different roles (either inhibitory or

excitatory) in the control of intestinal motility and secre-

tion. The 5-HT3 receptor is coupled to an ion channel,

whereas HT1,2,4,5,6,7 receptors are coupled to G proteins.

The class of 5-HT1 receptors [17] is heterogeneous and

includes several subtypes, such as 5-HT1A, 5-HT1B,

5-HT1C, 5-HT1E, 5-HT1F and 5-HT1-like. All 5-HT1

receptor subtypes consist of a single peptide of variable

length (from 374 to 421 amino acids), and they share at

least 60 % homology in their transmembrane domains.

5-HT1A receptors have a wide distribution in several brain

regions involved in the modulation of emotions, such as the

hippocampus, septum, dorsal raphe nuclei and amygdala

[17], where they act mainly as inhibitory somatodendritic

autoreceptors. However, at limbic level, particularly in the

hippocampus, 5-HT1A receptors are located post-synaptic-

ally, and here, their activation results in hyperpolarization

of somatodendritic neuronal membrane [18]. These

receptors have been found also in the neocortex and the

gelatinous substance of the spinal cord, which are involved

in the regulation of proprioceptive and integrative func-

tions [17]. In the GI tract, 5-HT1A receptors are expressed

in the ENS, particularly in the submucosal and myenteric

plexuses [11], where they mediate degranulation of enteric

mast cells and release of mediators, including histamine

[19].

5-HT1B receptors are predominantly distributed in the

striatum of basal ganglia and the prefrontal cortex, where

they act as autoreceptors [18]. The 5-HT1C subtype is

similar in structure and transduction mechanism to recep-

tors of the 5-HT2 family, and for this reason, it has been

renamed 5-HT2C [20].

5-HT1D receptors display a high degree of homology

with 5-HT1B receptors, but they are expressed with lower

density. They inhibit neurotransmitter release [21] and

mediate contraction of vascular smooth muscle cells [22].

The highest 5-HT1D receptor densities are found in the

raphe nuclei. 5-HT1D receptors are expressed as a and b
isoforms, endowed with similar pharmacological profiles

[23–25]. The highest densities of 5-HT1E receptor sites

have been found in the caudate and putamen [26]. Their

specific functional role is still not clear [27]. 5-HT1F

receptors have been identified in the CNS, particularly in

the neocortex, where they might contribute to the integra-

tion of information associated with limbic functions [28].

5-HT1-like receptors are located in the CNS and intracranial
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vessels. They inhibit noradrenaline release from sympa-

thetic nerves [29] and vascular smooth muscle cell con-

traction [30]. 5-HT1P receptors are expressed in the GI

tract, where they mediate excitatory actions on vagal

afferent fibers [31].

The 5-HT2 receptor family includes three subtypes,

named 5-HT2A, 5-HT2B and 5-HT2C. They are expressed

predominantly in peripheral tissues, such as stomach,

intestine, heart and kidney [32], while in the CNS they are

found in the cerebellum, lateral septum, hypothalamus and

middle part of the amygdala. 5-HT2A and 5-HT2C receptors

are known to mediate the neurochemical and behavioral

effects of psychostimulants [33]. In the GI tract, they pro-

mote contractions of smooth muscle cells [12].

The 5-HT2B receptor was first identified in the fundus of

rat stomach [32]. Originally classified as 5-HT1-like recep-

tor [34], it has been recently assigned to the 5-HT2 receptor

family with the name of 5-HT2B [20, 35, 36]. In the rat,

5-HT2B receptor stimulation mediates hyperphagia and

reduces ‘‘grooming’’ behavior [37]. Peripherally, 5-HT2B

receptors are located in myenteric nerves and colonic

smooth muscle cells, where they mediate contractile

responses of the longitudinal muscle layer to electrical

stimulation [38]. 5-HT2C receptors are predominantly

expressed in epithelial cells of the choroid plexus, cerebral

cortex, hippocampus, amygdala, some components of basal

ganglia, substantia nigra, substantia innominata and ven-

tromedial hypothalamus [39].

5-HT3 receptors belong to the ion-channel-linked recep-

tor super-family, which includes nicotinic, cholinergic and

gamma-aminobutyric acid (GABA) A receptors [40]. They

are located in the hippocampus, dorsal motor nucleus of the

solitary tract and area postrema [41]. At the CNS level, they

are involved in the regulation of emetic responses to various

stimuli, including anticancer chemotherapy. The activation

of 5-HT3 receptors elicits central effects comparable to those

observed after administration of antipsychotic and anxiolytic

drugs, due to their ability to modulate the release of other

Table 1 Receptor subtypes in

the brain and in the GI tract

GI tract gastrointestinal tract, 5-

HT 5-hydroxytryptamine, CNS

central nervous system, GABA

gamma-aminobutyric acid

Receptor subtypes Location Main functional role

5-HT1A CNS

GI tract

Neuronal hyperpolarization [18]

Degranulation of enteric mast cells; release of mediators [19]

5-HT1B CNS Autoreceptor; inhibition of neurotransmitter release [18]

5-HT1D CNS

Intracranial vessels

Inhibition of neurotransmitter release [21]

Contraction of vascular smooth muscle [22]

5-HT1E CNS Unknown [27]

5-HT1F CNS Integration of sensorimotor or afferent information

associated with limbic functions [28]

5-HT1-like CNS

Intracranial vessels

Inhibition of noradrenaline release [29]

Smooth muscle contraction [30]

5-HT1P GI tract Excitatory action on vagal afferent fibers [31]

5-HT2A CNS

GI tract

Involvement into the neurochemical and behavioral effects

of psychostimulants [33]

Contraction of gut smooth muscle [12]

5-HT2B GI tract Increased response of the colonic longitudinal smooth muscle

[38]

5-HT2C CNS

Choroid plexus

Production of regulation of emotional states [39]

Cerebrospinal fluid [39]

5-HT3 CNS

GI tract

Modulation of the release of other neurotransmitters

such as dopamine, GABA, substance P and acetylcholine [42]

Motility [46] and pain transmission [8, 38]

5-HT4 CNS

GI tract

Memory [47], cognitive function [48], affective symptoms [50]

Contraction of smooth colonic muscle

Prokinetic effect

Neurotransmitter release [31]

5-HT5A CNS Regulation of affective states, learning, sensory perception,

neuroendocrine functions and memory [54, 55]

5-HT6 CNS Regulation of affective states [58]

5-HT7 CNS

GI tract

Regulation of affective states

Muscle relaxant action of GI tract [59]
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neurotransmitters such as dopamine, GABA, substance P

and acetylcholine [42]. In the GI tract, 5-HT3 receptors are

expressed in enteric neurons, smooth muscle cells, vagal and

spinal primary afferent neurons, and in the spinal cord [43,

44]. 5-HT3 receptors activate extrinsic sensory neurons

which mediate pain [8, 38]. They also regulate the pace-

maker activity of the interstitial cells of Cajal [45, 46].

5-HT4 receptors are localized in the CNS, where it has

been suggested they play a role in enhancing memory [47].

Several studies indicate that 5-HT4 receptors are involved

in cognitive functions [48], affective symptoms and the

development of Alzheimer’s disease [49, 50]. A study of

Madsen et al. [51] showed that healthy women had a lower

5-HT4 receptor binding in the limbic system. In the GI

tract, 5-HT4 receptors are expressed in enteric neurons and

smooth muscle cells. After 5-HT4 receptor activation,

acetylcholine is released from enteric interneurons and

motor neurons, thus promoting and maintaining propulsive

motility [52]. In the heart, 5-HT4 agonists elicit positive

chronotropic and inotropic effects in the isolated human

atrium [53].

5-HT5A receptors are distributed predominantly in the

cortex, hippocampus, hypothalamus, amygdala and cere-

bellum. Depending on their localization, 5-HT5A receptors

are involved in the regulation of several functions, such as

the control of affective states, sensory perception and

neuroendocrine functions [54]. The limbic distribution of

these receptors suggests a role in learning, memory and

emotional state [55, 56]. 5-HT5B receptors are expressed in

mice but not in humans [57].

5-HT6 receptors are located in the striatum, amygdala,

nucleus accumbens, olfactory tubercle and cortex. As dem-

onstrated by several pharmacological studies, many anti-

psychotic drugs (clozapine, olanzapine and quetiapine) and

antidepressants (clomipramine, amitriptyline and nortripty-

line) act as high affinity antagonists of 5-HT6 receptors [58].

5-HT7 receptors are distributed in the limbic system and

thalamocortical regions, where they are involved in the

modulation of affective states. They are also expressed in

smooth muscle cells of peripheral vessels and intestine,

where they mediate muscle relaxation [59]. In this respect,

Tonini et al. [60] found that 5-HT7 receptors mediate

intestinal smooth muscle relaxation and accommodation in

the guinea pig ileum. The authors suggested that an

abnormal stimulation of 5-HT7 receptors may contribute to

clinical syndromes, like IBS, and that they could be a

possible candidate for therapeutic interventions.

Serotonergic transmission in gut–brain axis

5-Hydroxytryptamine is a very active mediator in both the

ENS and the CNS. In the periphery, about 90 % of 5-HT is

synthesized in the gut by the ECs. Physiological intralu-

minal distension of the intestine and its propulsive activity

promotes the release of 5-HT from ECs of the enteric

mucosa [61]. Once released, 5-HT stimulates 5-HT3 and

5-HT4 receptors, located on intrinsic primary afferent

neurons (IPANS) of the ENS, which mediate both secre-

tory and motor responses. In the GI tract, both the secretory

and peristaltic reflexes are regulated by 5-HT release from

ECs and depend on the stimulation of 5-HT1B/1P and 5-HT4

receptors located on submucosal IPANs [8, 62]. Post-syn-

aptic 5-HT3 receptors are present in both enteric plexuses,

particularly in the motor neurons that innervate smooth

muscle [38].

Danzenbrink and Gebhart [63] demonstrated that 5-HT1,

5-HT2 and 5-HT3 receptors mediate noxious visceral

stimulus. A main function of 5-HT3 receptors is the acti-

vation of EPANs, which mediate the pain and swelling of

bowel wall associated with IBS [8, 38].

It has been suggested that pain signals originate in

IPANs and are transmitted by EPANs [64]. The connec-

tions to the brain occur through vagal and spinal afferent

nerves. Vagal afferent neurons have their cell bodies

located in the nodose ganglia and project to the nucleus of

the solitary tract, which in turn projects to the thalamus and

transmits signals to the limbic system and to the frontal

cortex for polymodal association and perception of pain.

First-order spinal afferent nerves synapse in the dorsal

horn-lamina II and IV. Second-order neurones project to

the brain through the spinothalamic and spinoreticular tract

[65]. The second-order neurons synapse with third-order

neurons in the thalamus and reticular nuclei. Spinal affer-

ents transmit pain signals to the somatosensory cortex to

discriminate and process pain information (Fig. 1).

Serotonergic fibers, descending from brain to the dorsal

horn neurons, are responsible for visceral sensitivity, thus

modulating perception during gut stimulation [66, 67].

Recently, Keszthelyi et al. [68] showed significantly

lower mucosal and higher systemic concentrations of both

5-HT and kynurenic acid, a main kynurenine metabolite, in

IBS patients as compared to healthy controls. Also, sig-

nificant correlation between mucosal but not plasma con-

centrations of kynurenic acid and 5-HT and psychological

state in IBS was observed [67]. Moreover, Stasi et al. [69],

in diarrhea-predominant IBS (D-IBS), have shown a cor-

relation between plasma cortisol and 5-HT, which could be

explained by the concomitant activation of the hypotha-

lamic-pituitary-adrenal (HPA) axis to limit local inflam-

matory processes in response to both exteroceptive and

interoceptive stress (with the consequent activation of ECs,

production of 5-HT, activation of mast cells and secretion

of cytokines). These data suggest that an alteration of 5-HT

production and consequently neurotransmission could be

involved in psychological state and IBS symptoms.
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IBS has a strong predominance in women. Reported

prevalence rates of IBS range from 8 to 20 % in the general

US population, with a 2:1 female-to-male ratio [70]. Nakai

et al. [71] showed that 5-HT synthesis in the right medial

temporal gyrus (multimodal sensory association cortex)

was higher in female IBS patients than in female controls.

This suggests a relationship with the pathological visceral

pain processing of IBS female patients. It has been dem-

onstrated that the number of 5-HT4 receptors in the female

brain is lower than in the male brain, suggesting that this

might be the basis for the sex-specific difference in emo-

tional control and the higher prevalence of affective dis-

eases and visceral hypersensitivity in women [51].

Several factors, such as the high prevalence of anxiety

and psychological disorders, have been shown to increase

intestinal response to psychological stress [2]. Clinical

response to serotonin drugs acting at the central level [72,

73] suggests an involvement of the limbic system in the

pathophysiology of IBS. In recent years, the importance of

the body’s response to stress has repeatedly been

underlined and represents one of the main factors that can

modulate motility and visceral perception through brain–

gut interaction (brain–gut axis) [2, 9].

Irritable bowel syndrome is associated with visceral

hypersensitivity, which can be related to deranged pro-

cessing, representation and modulation of gut signals in the

brain [74, 75]. Whitehead et al. [76] showed that patients

with IBS have a significantly lower pain threshold than

controls. Increased sensitivity to distention of the colon and

rectum was observed in patients with D-IBS as compared

with healthy subjects [77, 78], while studies in patients

with C-IBS have yielded conflicting results [79, 80].

However, no significant differences in pain threshold have

been shown in patients with D-IBS when compared with

patients with C-IBS [81]. These data suggest that the

alterations of 5-HT transmission in the CNS are similar in

D- and C-IBS. Drossman et al. [82], using functional

magnetic resonance imaging of the brain in a IBS patient,

found a correlation between the severity of clinical symp-

toms and psychosocial state, with activation of the cingu-

late cortex, the critical center for pain control. Other

studies have shown deactivation of the insula, the amyg-

dala and the striatum of patients with IBS compared to

controls [83, 84]. These brain areas are part of the central

stress circuit, that is, under feedback control through the

projections from the brainstem nuclei, in particular from

serotonergic nuclei such as the raphe nucleus [2]. 5-HT

receptors are expressed in cortical and limbic areas of the

brain involved in emotional conditions and perception of

visceral pain. Activation of 5-HT3 receptors on the central

terminals of spinal afferents increases the spinal transmis-

sion in the entire dorsal horn, which results in increased

pain and reflex responses [85].

Moreover, stress may increase the permeability of the

blood–brain barrier and enhance the action of some drugs

on central targets when they are orally administered [86].

In animal models, transient blockade of the 5-HT3 receptor

by intrathecal injections of the antagonist ondansetron

reduces mechanical allodynia after spinal cord injury [87].

Tegaserod antagonizes 5-HT2B receptors at concentrations

similar to those that activate 5-HT4 receptors and has sig-

nificant binding affinity for human recombinant 5-HT2A,

5-HT2B and 5-HT2C receptors [88, 89]. The ability of

tegaserod to alleviate abdominal pain and discomfort in

patients with IBS is likely due not to its effects on

peripheral 5-HT4 receptors, but probably to its actions on

5-HT2A, 5-HT2B and 5-HT2C receptors located in CNS.

Therapeutic approach to irritable bowel syndrome

Several studies have investigated alterations of serotoner-

gic signaling in IBS; consequently, treatment strategies for

Fig. 1 (Modified from Stasi et al. [2]). Schematic model of

serotonin-mediated brain–gut connection. In the ENS, 5-HT binds

to 5-HT3 receptors and via afferent fibers connects the gut to the

central stress circuit (PVN, hippocampus, amygdala, LC, raphe

nucleus and HPA axis). These cerebral areas are altered in IBS

patients, because of exteroceptive chronic stress, leading to a local

release of 5-HT. This may result in hyperalgesia and allodynia typical

of this condition. The descending pathways may either inhibit or

facilitate nociceptive signalling. 5-HT serotonin, ENS enteric nervous

system, PVN paraventricular nucleus, LC locus coeruleus, HPA

hypothalamic-pituitary-adrenal, IBS irritable bowel syndrome
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IBS involving 5-HT receptors are currently directed at

managing the predominant symptoms. Initial pharmaco-

logical attempts have been primarily directed towards those

receptors known to regulate intestinal function, such as

5-HT1, 5-HT3, 5-HT4 and 5-HT7 subtypes.

Ondansetron and alosetron are antagonists of 5-HT3

receptors. They delay transit throughout the colon both in

D-IBS and controls [90]. Moreover, ondansetron increases

the consistency of feces both in healthy volunteers and IBS

patients [91, 92].

Likewise, alosetron, another 5-HT3 antagonist, was

shown to be able to delay colonic transit in both healthy

volunteers and D-IBS patients [5, 93].

Some studies suggest that antagonists of 5-HT4 recep-

tors may induce a significant slowing of intestinal transit,

thus allowing a potential therapeutic benefit in patients

with D-IBS [94]. Piboserod, an antagonist of 5-HT4

receptors, showed no significant effects in the treatment of

D-IBS [95]. In contrast, 5-HT4 receptor agonists, such as

tegaserod and prucalopride, accelerate GI transit in humans

[96, 97].

In summary, these studies suggest that the antagonists of

5-HT3 receptors can delay intestinal transit, while the ago-

nists of 5-HT4 receptors can lead to a transit acceleration.

Some patients with IBS display increased visceral sen-

sitivity and/or an increased perception of intestinal dis-

tension. It has been observed that antagonists acting on

5-HT3 receptors, expressed on post-synaptic neurons of the

peripheral nervous system, can modify the visceral sensa-

tion [98], thus improving abdominal pain and discomfort.

Consistently with these findings, a recent multicenter,

randomized study [99] has shown that ramosetron (5-HT3

antagonist) can alleviate abdominal pain/discomfort and

abnormal bowel habits in male patients with D-IBS. Pre-

vious experimental evidence showed that tegaserod

(a partial 5-HT4 receptor agonist) can induce a dose-

dependent reduction in the discharge rate from mechano-

sensory neurons in the spinal cord of the cat [100]. A

systematic review by Evans et al. [101] showed that in

patients with C-IBS, tegaserod counteracted symptoms

when compared with placebo, while it did not increase

bowel movements. Since tegaserod was withdrawn from

the market owing to cardiovascular adverse events, phar-

macological research has been focused on the development

of high-selective 5-HT4 receptor agonists in an attempt to

circumvent aspecific adverse effects.

Naronapride (ATI-7505) is a novel selective 5-HT4

receptor agonist. In a clinical trial, the effects of this drug

were evaluated after 9 days of treatment in healthy vol-

unteers, and the assessment of GI and colonic transit by

scintigraphy showed accelerated colonic transit and

ascending colonic emptying [102].

Prucalopride (a dihydrobenzofuran-carboxamide deriva-

tive) is a selective and specific 5-HT4 receptor agonist

endowed with enterokinetic properties, recently approved by

the European Medicines Agency (EMA) for treatment of

idiopathic chronic constipation. Over a 12-week treatment

period, 2 and 4 mg of prucalopride once daily significantly

improved bowel habits in three large, randomized, double-

blind, multicenter trials in patients with severe chronic con-

stipation. Prucalopride was well tolerated: the incidence of QT

interval prolongation was low and similar to that induced by

placebo [97]. Prucalopride is able to penetrate the blood–brain

barrier, and it binds to 5-HT4 receptors in the rat brain [103].

Manini et al. [104] reported that the 5-HT4 agonist

velusetrag significantly accelerated intestinal and colonic

transit (ascending colon emptying) after a single dose and

accelerated gastric emptying after multiple dosing. Hoff-

man et al. [105] demonstrated that, similar to other 5-HT4

receptor, velusetrag promotes propulsive motility and

attenuates visceral hypersensitivity, but the precise mech-

anisms remain unclear.

Conclusions

In the CNS and in the gut, altered 5-HT signaling contributes

to hypersensitivity and abnormal gut function in IBS, sug-

gesting that this neurotransmitter with endocrine and para-

crine functions may play a role in the development of IBS

symptoms. The therapeutic effects of 5-HT3 antagonists and

5-HT4 agonists in IBS treatment are likely to be due also to

the ability to modulate visceral nociception in the central

stress circuit. It would be important to continue to investigate

other receptor subtypes in the brain, particularly those reg-

ulating the affective states and the response to stress, in order

to clarify their role in visceral perception. Further studies

along these lines are needed in order to develop an optimal

treatment for IBS.
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